
Definitive Painter User Manual

Plugin version 1.2.2

Supported UE versions 4.26, 4.27, 5.0

Supported platforms Windows 64-bit
Linux 64-bit

Latest Manual update 11 Jun 2022

Support info@soucekmartin.cz

Twitter https://twitter.com/DefPainter

Marketplace https://www.unrealengine.com/
marketplace/product/definitive-
painter

Discord https://discord.com/invite/
aDhVsSSShB

Author Martin Soucek

1

https://twitter.com/DefPainter
https://discord.com/invite/aDhVsSSShB
https://discord.com/invite/aDhVsSSShB
https://www.unrealengine.com/marketplace/product/definitive-painter
https://www.unrealengine.com/marketplace/product/definitive-painter
https://www.unrealengine.com/marketplace/product/definitive-painter


Table of Contents

Definitive Painter User Manual 1
Introduction 5

Why? 5
How? 5

Installation 5
Windows 5
Linux 5

Architecture 6
Terminology 6
Widgets 8

Widget Guides 12
DP Canvas 13

Parameters 13
DP Arc 14

Parameters 14
DP Circle 16

Parameters 16
DP Mesh 17

Parameters 17
DP Oval 19

Parameters 19
DP Path 20

Parameters 20
Commands 21

DP Path Composer 30

Parameters 30
DP Point Cloud 33

Parameters 33
DP Rectangle 34

Parameters 34
DP SVG 35

Parameters 35
DP Text 36

Parameters 36
DP Text On Path 38

Parameters 38
Widget Animation 41

Register Animated Property 43
Get Animated Property Value 44
Get Animated Property Value 44
Set Animated Property Start Value 45
Set Animated Property Target Value 45
Set Animated Property Value 46
Reset Animated Property 46

Paint 48
Parameters 48

Shaders 53
Path Effects 60
Image Filters 64
Mask Filters 65

Quick Elements 67
Draw Rect 67

2



Draw Circle 68
Draw Oval 69
Draw Arc 70
Draw Line 72
Draw Mesh 73
Make Path 74

Path Move To 74
Path Line To 75
Path Conic To 75
Path Cubic To 76
Path Quad To 77
Path Add Circle 78
Path Add Oval 78
Path Add Rect 79
Path Add Round Rect 79
Path Add Poly 80
Path Close 81
Set Path Fill Type 81
Draw Path 82
Get Path Length 83
Get Position on Path 84
Get Path Tangent 84

Draw Text 85
Draw Text on Path 86
Measure Text 87
FDPQuickTransform 87

Performance considerations 89

Geometry 89
Paint 89
Animations 89

Known limitations and issues 90
Changelogs 91

Changelog 1.2.2 91
Changelog 1.2.1 91
Changelog 1.2.0 91
Changelog 1.1.4 91
Changelog 1.1.3 91
Changelog 1.1.2 92
Changelog 1.1.1 92
Changelog 1.1.0 92
Changelog 1.0.3 93
Changelog 1.0.2 93
Changelog 1.0.1 93

3



4



Introduction

Definitive Painter is a 2D vector graphics plug-in based on Skia that 
enables you to draw various vector-based elements inside Unreal Motion
Graphics in Unreal Engine. You can create anything from basic widgets 
to complex user interfaces without the need for any external tools. 
Everything can be done right inside Unreal Engine.

Definitive Painter seamlessly integrates with existing UMG system by 
introducing new Widgets. However, it does not replace UMG.

Why?

Unreal Motion Graphics has been known for its numerous limitations in 
terms of rendering complex dynamic shapes with antialiasing. Do you 
need to draw an intricate curve or a simple rectangle with rounded 
corners without firing up Photoshop? Bad luck! Definitive Painter aims to 
fill this gap that has been there for years.

How?

Definitive Painter is based on Skia by Google. It’s an open source 
graphics library powering rendering in some web browsers and Android 
applications. Skia does its magic and saves whatever comes out of it into
a buffer. Content of the buffer is then copied into a texture right in 
Unreal Engine.

Installation

Windows

1. Install the plugin from Epic Game Launcher to the Engine.
2. Launch Unreal Editor, navigate to Edit > Plugins and enable 

Definitive Painter plugin and that’s it! You’re good to go!

Linux

1. Download the plugin via Epic Game Launcher on a Windows 
machine and delete the Binaries and Intermediate folders.

2. Download or clone the Unreal Engine source code from Epic 
Github on your Linux machine.

3. Run the Setup.sh script in the Engine root.

4. Copy the plugin folder DefinitivePainter to the Plugins folder in 
the Engine <root>/Engine/Plugins.

5. Run the GenerateProjectFiles.sh script in the Engine root.

6. Execute make command from the terminal in the Engine root.

7. Navigate to <root>/Engine/Binaries/Linux and execute UE4Editor 
command to run the Editor.

8. Launch Unreal Editor, navigate to Edit > Plugins and enable 
Definitive Painter plugin and that’s it! You’re good to go!

Note that steps 1, 4, 5, and 6 need to be repeated every time a new 
version of the plugin is released.

5



Linux support is pretty much experimental right now. The plugin was 
tested on Ubuntu 20.04. The plugin has never been tested on any 
embedded system. Please, keep all that in your mind in case you are 
considering buying the plugin :-).

Architecture

Everything in Definitive Painter is encapsulated in DP Canvas, a Widget 
managing rendering. All DP Widgets must be direct or indirect 
descendants of one of these.

While DP Canvas can contain only one child, other DP Widgets acts 
exactly like UMG Canvas Panel. Therefore, they can contain any number 
of arbitrarily placed children. Widget Tree can be constructed in any 
way you’re used to. DP Widgets can contain default UMG Widgets and 
vice versa.

In order to actually draw something, DP Widgets must be provided with 
a Paint asset. The relationship between the two is similar to the one 
between meshes and materials in Unreal Engine. While DP Widgets 
define geometric shape of the Element, Paint defines color, gradient and
other effects.

By default, every DP Widget draws one shape (rectangle, circle, text, 
etc.). DP Widgets can also draw additional shapes in the Quick Draw 
mode allowing for hundreds of shapes to be drawn without any 
significant performance impact. However, shapes drawn in this mode 
have certain limitations in terms of what kinds of effects can be applied 

on them and are not subjects to UMG Widget Tree system. Lear more 
here.

Terminology

1. Widget
Widget is the fundamental building block of the UI in Unreal 
Engine. Widgets are organized within a Widget Tree to form a UI. 
Definitive Painter extends this system by introducing own 
Widgets. Each DP Widget draws a single Element.

2. Element
An Element is a single geometric shape that can be anything from
a rectangle to a complex path.

3. Paint
Paint controls the look of Elements. Paint can be defined as an 
asset and be reused on multiple Elements, or it can be created on
the fly and altered dynamically.

6



7



Widgets

Widget Common parameters
Common parameters for all Widgets except for the DP Canvas.

Paint
The Paint asset used to draw the Element.

Paint Override
Optional Paint override. Does nothing if set to None, otherwise overrides
the Paint asset. If the Paint asset is set at the time you set the Paint 
override, the Paint asset is copied into the Paint override.

Draw Guidelines
Toggles drawing of Widget guidelines in the Editor.

Draw Guide Points
Toggles drawing of Widget guide points in the Editor.

On Draw Quick Elements
This event is used to draw so called Quick Elements which are basic 
shapes like rectangles, circles, and even paths, etc. within the bounds of 
the Widget. These Elements are not managed by the Widget Tree so 
they are much faster to render. You cannot interact with these Elements 
in any way while in the game.

A typical usage for Quick Elements is to render bars in a bar charts or 
ticks on a scale. The event is executed right after the Widget itself is 
rendered. The list of all Quick Elements can be found here.

8



On LMB Pressed
Fires when the left mouse button was just pressed and the Widget is 
hovered by the mouse.

Position FVector2D
Mouse position relative to the top left corner of the Widget.

Widget UDPWidget

The Widget that fired the event.

On LMB Released
Fires when the left mouse button was just released and the Widget is 
hovered by the mouse.

Position FVector2D
Mouse position relative to the top left corner of the Widget.

Widget UDPWidget

The Widget that fired the event.

On LMB Down
Fires when the Widget is hovered by the mouse and the left mouse 
button is being held down.

Position FVector2D
Mouse position relative to the top left corner of the Widget.

Widget UDPWidget

The Widget that fired the event.

9



On RMB Pressed
Fires when the right mouse button was just pressed and the Widget is 
hovered by the mouse.

Position FVector2D
Mouse position relative to the top left corner of the Widget.

Widget UDPWidget

The Widget that fired the event.

On RMB Released
Fires when the right mouse button was just released and the Widget is 
hovered by the mouse.

Position FVector2D
Mouse position relative to the top left corner of the Widget.

Widget UDPWidget

The Widget that fired the event.

On RMB Down
Fires when the Widget is hovered by the mouse and the right mouse 
button is being held down.

Position FVector2D
Mouse position relative to the top left corner of the Widget.

Widget UDPWidget

The Widget that fired the event.

10



On Hovered
Fires when the mouse enters the Widget’s geometric area.

Position FVector2D
Mouse position relative to the top left corner of the Widget.

Widget UDPWidget

The Widget that fired the event.

On Unhovered
Fires when the mouse leaves the Widget’s geometric area.

Position FVector2D
Mouse position relative to the top left corner of the Widget.

Widget UDPWidget

The Widget that fired the event.

Note that there are two hit test precision levels for all mouse related 
events called Hit Test Precision found in the Behavior section in all DP 
Widgets:

A. Bounding Box
This is the same as the default Unreal Engine behavior.

B. Precise
This takes into account the exact geometric shape of the Element
and is not limited to the Widget’s rectangular bounding box.

11



Widget Guides
Widget Guides show you the exact geometric shape of Elements. When 
many Elements and/or complex Paths are present within a DP Canvas, it 
may be quite difficult to distinguish individual Elements, let alone Path 
Commands.

The Guides can be either lines and curves following Path and perimeters 
of other Elements or points indicating centers and control points of Path 
Commands.

The Guides can be enabled or disabled for each Widget individually or 
for the whole DP Canvas and all its children. They can also be toggled by
the Enables or disables showing the dashed outlines button in the 
Editor.

A circle with the real perimeter and center shown.

12



A path with the real perimeter and control points for each Command
shown. This Path comprises a Move To command, two Cubic To

commands, and a Line To command. The C1 and C2 point shows the
locations of the cubic control points.

DP Canvas
This is the most important Widget of them all. It manages rendering of 
all descendant DP Widgets. Multiple DP Canvases can be present inside 
a single Widget Blueprint but you should keep the total number of them 
as low as possible as every DP Canvas on its own brings additional 
performance cost.

DP Canvas can contain only one child and doesn’t draw anything on its 
own except for optional background color.

Parameters

Use GPU Acceleration
Enables GPU accelerated rendering of Elements. You will usually benefit 
from this when using complex effects and/or rendering many (>100) 
Elements. On the other hand, it’s better to disable this option when 
rendering only a few Elements with a flat color as the GPU acceleration 
may perform worse in these scenarios.

13



Is Template
If a Widget Blueprint containing the DP Canvas marked with this flag is 
inserted as a child into another DP Canvas, all descendant DP Widgets 
will be rendered only into the topmost DP Canvas saving some 
performance. This is useful whenever you need to reuse the same 
Widget Blueprint multiple times - create a template.

Clear Color
This color is used to fill the background of DP Canvas before Elements 
are rendered.

One Time Render
Content of the DP Canvas will be rendered only once each time the 
Widget is rebuilt or spawned. This option saves a lot of performance and
is useful when you need only a static Widget with no animations or user 
interaction.

DP Arc
This Widget draws an arc defined by the start and sweep angles. Width 
and height of the arc are defined by the size of the Widget. Center of 
the arc lies at the center of the Widget.

Parameters

Start Angle
Start angle of the arc in degrees. Starts at 3 o’clock and goes 
counterclockwise when increased.

Sweep Angle
Defines the angle span of the arc in degrees. Starts at the Start Angle 
and goes counterclockwise.

Use Center
Connect both ends of the arc with its center. Has no effect when used 
with a filled Paint.

14



Aggressive Fit
When enabled, the size of the shape will be reduced by the width of the 
stroke to make it perfectly fit within the bounds. Has no effect when 
used with a filled Paint.

An arc with Start Angle 45 degrees and Sweep Angle 270 degrees.

An arc with enabled Center.

15



DP Circle
This Widget draws a circle. Radius of the circle is equal to half the 
smaller side of the Widget. Center of the circle lies at the center of the 
Widget.

Parameters

Aggressive Fit
When enabled, the size of the shape will be reduced by the width of the 
stroke to make it perfectly fit within the bounds. Has no effect when 
used with a filled Paint.

16



DP Mesh
This Widget draws triangles defined by a set of vertices and optional 
indices. DP Mesh doesn’t support stroked Paint. If you need to draw 
stroked (wireframe) triangles, use DP Path Widget instead.

Parameters

Vertices
An array of vertices defining the mesh. Only the Position parameter is 
required.

Position
Vertex position in screen space.

Tex Coords
Texture coordinates used when an effect is applied to the Paint. Value 
of this parameter is not in the usual range 0...1 but in the range 
0...canvas width for the X axis and in the range 0...canvas height for the 
Y axis.

Color
Vertex color.

Indices
An array of integer indices defining the order in which the vertices are 
used to construct the mesh. Number of indices must be divisible by 3 as 
each triangle has 3 vertices thus total number of indices must be equal 
to the number of triangles times 3.

Each vertex can be used multiple times. Each index is equal to the 
position of a vertex in the vertex list beginning with 0. Using indices 
allows you to share vertices between multiple triangles thus saving some
memory by defining vertices with same attributes (position, color, etc.) 
only once.

17



A rectangle drawn in the Triangles vertex mode using two triangles, four
vertices (A = 50,50, B = 50, 450, C = 450, 450, D = 450, 50) and six

indices (0, 1, 3, 3, 1, 2). The 1st triangle consists of vertices A, B, D (indices
0, 1, 3). The 2nd triangle consists of vertices D, B, C (3, 1, 2). Note that

vertices forming each triangle are defined in so called “counterclockwise
winding”.

Vertex Mode
Defines the method of constructing the mesh.

A. Triangles
Draws a list of triangles, one by one. Triangles may or may not 
share vertices and can be detached from each other.

B. Triangle Strip
Draws a strip of triangles. The first triangle is defined by 3 
vertices. Every additional vertex adds a triangle consisting of the 
vertex and the 2 previously added ones.

C. Triangle Fan
Draws a fan. The first triangle is defined by 3 vertices. The first 
vertex forms the center of the fan. Every additional vertex adds a 
triangle consisting of the vertex, the previously added vertex, and
the vertex in the center of the fan.

Blend Mode
Defines the blending mode of vertex colors and the Widget’s Paint.

Use Indices
Use indices when constructing the mesh.

Aggressive Fit
Has no effect as DP Mesh can’t have a stroked Paint.

18



A strip drawn using the Triangle strip vertex mode. Only six vertices (A,
B, C, D, E, F) are needed to draw four triangles instead of twelve

vertices that would be needed to draw the same shape in the Triangles
vertex mode. The obvious downside of this mode is that adjacent

triangles share an edge and can’t be separated.

A fan drawn using the Triangle Fan vertex mode. Only six vertices (A, B,
C, D, E, F) are needed to draw four triangles instead of twelve vertices
that would be needed to draw the same shape in the Triangles vertex
mode. The obvious downside of this mode is that adjacent triangles
share an edge and can’t be separated. Also, all triangles share the

vertex forming the center of the fan which is always the first vertex of
the mesh.

DP Oval
This Widget draw an oval. The width of the oval is equal to the width of 
the Widget and the height of the oval is equal to the height of the 
Widget. The center of the oval lies at the center of the Widget.

Parameters

Aggressive Fit
When enabled, the size of the shape will be reduced by the width of the 
stroke to make it perfectly fit within the bounds. Has no effect when 
used with a filled Paint.

19



DP Path
DP Path can draw anything from a simple line to intricate curves and 
shapes. DP Path comprises of commands which defines individual parts 
of the path like lines, bézier curves, etc.

Parameters

Commands
An array of commands defining the path.

X Axis Fit
Scales the path to fit the Widget’s width with the following options:

A. Never
Disables fitting.

B. If Smaller
Stretches the path if the path is narrower than the Widget.

C. If Bigger
Shrinks the path if the path is wider than the Widget.

20



D. Always
Combines the last two options.

Y Axis Fit
Does the same as the previous parameter but for the Y axis.

Fill Type
Defines the method of filling the path.

A. Winding
Specifies that inner area of the path is computed by a non-zero 
sum of signed edge crossings. Has no effect for paths with 
stroked Paint.

B. Even-Odd
Specifies that inner area of the path is computed by an odd 
number of edge crossings. Has no effect for paths with stroked 
Paint.

C. Inverse Winding
Is inverted Winding.

D. Inverse Even-Odd
Is Inverted Even-Odd.

Aggressive Fit
When enabled, the size of the shape will be reduced by the width of the 
stroke to make it perfectly fit within the bounds. Has no effect when 
used with a filled Paint.

Commands

Move To
Adds beginning of a new contour at the specified coordinates.

Coords
Coordinates at which the new contour should begin.

Relative Coordinates
If enabled, all coordinated specified in this command are relative to the 
last point of the path.

21



Line To
Adds a line from the last point of the path ending at the specified 
coordinates.

Coords
Coordinates at which the line ends.

Relative Coordinates
If enabled, all coordinated specified in this command are relative to the 
last point of the path.

Quad To
Adds a quad curve going from the last point of the path toward the 
Control Point and ending at the End Point.

Control Point
Defines the control point toward which the curve heads.

End Point
Defines the end point of the curve.

Relative Coordinates
If enabled, all coordinated specified in this command are relative to the 
last point of the path.

22



A quad curve drawn from the start point (100, 100) toward the control
point (250, 400) ending at the end point (400, 100).

Cubic To
Adds a cubic curve going from the last point of the path toward the 1st 
Control Point, then toward the 2nd Control Point and ending at the End 
Point.

Control Point 1
Defines the 1st control point toward which the curve heads.

Control Point 2
Defines the 2nd control point toward which the curve heads.

End Point
Defines the end point of the curve.

Relative Coordinates
If enabled, all coordinated specified in this command are relative to the 
last point of the path.

23



A cubic curve drawn from the start point (50, 200) toward the 1st control
point (750, 400, then toward the 2nd control point (-250, 400) ending at

the end point (450, 200).

Conic To
Adds a conic curve going from the last point of the path toward the 
Control Point and ending at the End Point. The curve is weighted by the 
parameter Weight.

Control Point
Defines the control point toward which the curve heads.

End Point
Defines the end point of the curve.

Weight
Defines the weight of the curvature of the curve. The higher the weight, 
the closer the curve to the control point. 0 results in a straight line 
between end start and the end points, while high numbers likes 100 and 
more result in a situation very close to two straight lines connecting the 
control point with the start point and the end point respectively.

24



Relative Coordinates
If enabled, all coordinated specified in this command are relative to the 
last point of the path.

A conic curve drawn from the start point (100, 100) toward the control
point (400, 100) ending at the end point (400, 400) with weight 0.5.

Close
Closes the path by connecting the last point with the first point with a 
line. This command has no parameters.

Add Circle
Adds a circle with the center at the Center and radius Radius.

Center
Center of the circle.

Radius
Radius of the circle.

Relative Coordinates
Not used.

25



A circle with center (200, 200) and radius (100).

Add Oval
Adds an oval drawn within the bounds of a rectangle defined by Position
and Size.

Position
Position of the top left corner of the bounding rectangle.

Size
Size of the bounding rectangle.

Relative Coordinates
Not used.

26



An oval drawn within the rectangle with position (100, 100) and size
(300, 150).

Add Poly
Adds a polyline defined by a set of points.

Points
Points defining the polyline.

Close
Close the polyline. If enabled, the polyline is closed by adding a line 
between the last and the first point.

Relative Coordinates
Not used.

27



A polyline made of a set of four points; A (50, 50), B (300, 150), C
(300,400), and D (100, 400).

Add Rect
Adds a rectangle with position at Position and size Size.

Position
Position of the top left corner of the rectangle.

Size
Size of the rectangle.

Relative Coordinates
Not used.

28



A rectangle drawn at position (100, 100) with size (300, 200).

Add Round Rect
Adds a rectangle with position at Position and size Size and optionally 
rounded corners. Each corner can have different radius.

Position
Position of the top left corner of the rectangle.

Size
Size of the rectangle.

Top Left Radius
Radius of the top left corner.

Top Right Radius
Radius of the top right corner.

29



Bottom Right Radius
Radius of the bottom right corner.

Bottom Left Radius
Radius of the bottom left corner.

Relative Coordinates
Not used.

A rectangle drawn at position (100, 100) with size (300, 200) and radius
of all 4 corners set to (50).

DP Path Composer
DP Path Composer combines two Path together using one of the 5 
available boolean operations. Both Paths contributing to the result can 
be individually transformed relatively to the Widget.

Parameters

Path A
The first Path.

30



Path B
The second Path.

Path X Translation
Moves Path A or B relative to the Widget.

Path X Scale
Scales Path A or B relative to the Widget.

Path X Rotation
Rotates Path A or B relative to the Widget.

Path X Pivot
Moves the Path A or B pivot point relative to the Path in the range 0...1.

Both source Paths need to be constructed as DP Path Widgets. The two
Widgets need to be marked as Is Variable and referenced in the Path A 
and Path B parameter respectively. Both source Widgets don’t need to 
be visible.

Paints defined in the source Widgets are ignored. Instead, the resulting 
Path is render with the Paint defined in the DP Path Composer Widget.

Compose Type
Controls the way the source Paths are combined together. The following
boolean operations are available:

A. Difference
Subtracts Path B from Path A.

B. Intersect
Intersect Path A and Path B.

C. Union
Unions Path A and Path B (inclusive OR).

D. XOR
XORs Path A and Path B (exclusive OR).

E. Reverse Difference
Subtracts Path A from Path B.

X Axis Fit
Scales the path to fit the Widget’s width with the following options:

A. Never
Disables fitting.

•

31



B. If Smaller
Stretches the path if the path is narrower than the Widget.

C. If Bigger
Shrinks the path if the path is wider than the Widget.

D. Always
Combines the last two options.

Y Axis Fit
Does the same as the previous parameter but for the Y axis.

Fill Type
Defines the method of filling the path.

A. Winding
Specifies that inner area of the path is computed by a non-zero 
sum of signed edge crossings. Has no effect for paths with 
stroked Paint.

B. Even-Odd
Specifies that inner area of the path is computed by an odd 
number of edge crossings. Has no effect for paths with stroked 
Paint.

C. Inverse Winding
Is inverted Winding.

D. Inverse Even-Odd
Is Inverted Even-Odd.

Aggressive Fit
When enabled, the size of the shape will be reduced by the width of the 
stroke to make it perfectly fit within the bounds. Has no effect when 
used with a filled Paint.

32



DP Point Cloud
DP Point Cloud draws a set of points. The points can be drawn 
individually or connected to form separated lines or a polyline.

Parameters

Points
The point set defining the cloud.

Mode
Defines the mode of drawing the point cloud.

A. Points
Draw each point separately.

B. Lines
Draw each pair of odd-even points as a line.

C. Polygon
Draw the points as an open polygon.

Aggressive Fit
Not used.

A Point Cloud drawn as separated points A (100, 100), B (150, 400), C
(400, 200), and D (200, 50).

33



A Point Cloud drawn as lines connecting points A (100, 100) and B (150,
400); C (400, 200) and D (200, 50).

A Point Cloud drawn as an open polygon connecting points A (100,
100), B (150, 400), C (400, 200), and D (200, 50).

DP Rectangle
DP Rectangle draws a rectangle within the bounds of the Widget with 
optionally rounded corners.

Parameters

Top Left Radius
Radius of the top left corner.

Top Right Radius
Radius of the top right corner.

Bottom Right Radius
Radius of the bottom right corner.

Bottom Left Radius
Radius of the bottom left corner.

34



Aggressive Fit
When enabled, the size of the shape will be reduced by the width of the 
stroke to make it perfectly fit within the bounds. Has no effect when 
used with a filled Paint.

A rectangle drawn with aggressive fit enabled.

DP SVG
DP SVG draws an SVG asset. SVG images can be imported directly into 
the editor to make an asset. Most features of SVG 1.1 are supported. 
Advanced features like scripting and animations aren’t supported but 
this may change in the future.

Parameters

SVG
SVG asset to be drawn.

Keep Aspect Ratio
If enabled, the SVG image will be drawn respecting its original aspect 
ratio. The image will be stretched to fit within the Widget’s bounds 
otherwise.

Aggressive Fit
Not used.

35



DP Text
DP Text draws a text using a defined font style.

Parameters

Text
The text to be drawn.

Justification
Justification of the text.

36



A. Left
B. Center
C. Right

Wrap Text
Wrap the text to make it fit within the bounds of the Widget.

Font
Font used to draw the text.

Typeface
Font typeface.

Size
Font size.

Color
Font color.

Scale X
Font scale X.

Skew X
Font skew X.

Edging
Transparency of edge pixels.

A. Alias
B. AntiAlias
C. Subpixel AntiAlias

Hinting
Font outline adjustment.

A. None
B. Slight
C. Normal
D. Full

Aggressive Fit
Not used.

37



DP Text On Path
DP Text On Path draws a text following a path.

Parameters

Text
The text to be drawn.

Path Commands
An array of commands defining the path.

Warp Text
Warp individual characters to make them perfectly fit the followed path. 
Note that this feature is slow and might not work properly on paths with 
sharp edges.

Draw Path
Draw the followed path.

Vertical Offset
Offsets the text vertically.

Horizontal Offset
Offsets the text horizontally.

Justification
Justification of the text along the followed path.

A. Left
B. Center
C. Right

38



Font
Font used to draw the text.

Typeface
Font typeface.

Size
Font size.

Color
Font color.

Scale X
Font scale X.

Skew X
Font skew X.

Edging
Transparency of edge pixels.

A. Alias
B. AntiAlias
C. Subpixel AntiAlias

Hinting
Font outline adjustment.

A. None

B. Slight
C. Normal
D. Full

Aggressive Fit
Not used.

Text following a path. Warp Text and Draw Path options are enabled.

39



40



Widget Animation

Every Definitive Painter Widget has its own predefined set of 
parameters which can be animated. All animations start upon the 
creation of the Widget and last for a specified amount of seconds. You 
can choose from 32 different types of animation. The animation for each
parameter is independent from other animations.

Animation types
A. None
B. Linear
C. In Sine
D. Out Sine
E. In-Out Sine
F. In Quad
G. Out Quad
H. In-Out Quad
I. In Cubic
J. Out Cubic
K. In-Out Cubic
L. In Quart
M. Out Quart
N. In-Out Quart
O. In Quint
P. Out Quint
Q. In-Out Quint
R. In Expo
S. Out Expo

T. In-Out Expo
U. In Circ
V. Out Circ
W. In-Out Circ
X. In Back
Y. Out Back
Z. In-Out Back
AA.In Elastic
AB.Out Elastic
AC. In-Out Elastic
AD.In Bounce
AE. Out Bounce
AF. In-Out Bounce

If the animation type is set to None and/or the length is set to 0, the 
animation is disabled for the corresponding parameter. All animations 
for the Widget are disabled by default.

See this amazing Easing Functions Cheat Sheet to learn more about 
available animation types.

41

https://easings.net/


Using the two buttons at the end of each Animation row, you can copy 
and paste the Animation settings to another Animation within the same 
Widget or a different one.

You can also register a custom Animated Property which is basically a 
helper that outputs a float value based on animation Type, Duration, 
Delay and Start and Target Value. The helper sets the output value to 
the Start Value upon the creation of the Widget, waits for a number of 
seconds specified in Delay, then interpolates the output value toward 
the Target Value for a period of time specified in Duration (seconds).

42



Register Animated Property

Target UDPWidget
A Definitive Painter Widget. The Widget is responsible for managing 
custom Animated Properties.

Type EDPAnimationType
Animation type.

Duration float
Animation duration.

Delay float
Animation delay.

Start Value float
The output value is set to the Start Value upon the creation of the 
Widget.

Target Value float
The output value is interpolated toward the Target Value.

Return Value int
The ID of the custom Animated Property. Store this value in a variable. 
You need the ID every time you interact with a custom Animated 
Property (reading its output value, etc.).

43



Get Animated Property Value

Target UDPWidget
A Definitive Painter Widget. The Widget is responsible for managing 
custom Animated Properties.

Return Value int
Number of custom Animated Properties registered in the target Widget.

Get Animated Property Value

Target UDPWidget
A Definitive Painter Widget. The Widget is responsible for managing 
custom Animated Properties.

Animated Property Index int
The ID of the custom Animated Property.

Return Value float
The output value of the custom Animated Property.

44



Set Animated Property Start Value

Sets a new Start Value for a custom Animated Property. This resets the 
timer of the Animated Property, sets the output value to the new Start 
Value and immediately starts interpolating the output value toward the 
Target Value ignoring the Delay.

Target UDPWidget
A Definitive Painter Widget. The Widget is responsible for managing 
custom Animated Properties.

Animated Property Index int
The ID of the custom Animated Property.

Start Value float
New Start Value.

Set Animated Property Target Value

Sets a new Target Value for a custom Animated Property. This resets 
the timer of the Animated Property and immediately starts interpolating 
the output value toward the new Target Value ignoring the Delay.

Target UDPWidget
A Definitive Painter Widget. The Widget is responsible for managing 
custom Animated Properties.

Animated Property Index int
The ID of the custom Animated Property.

Target Value float
New Target Value.

45



Set Animated Property Value

Sets the output value to the Value for a custom Animated Property. This
resets the timer of the Animated Property and starts interpolating the 
output value toward the Target Value ignoring the Delay and the Start 
Value.

Target UDPWidget
A Definitive Painter Widget. The Widget is responsible for managing 
custom Animated Properties.

Animated Property Index int
The ID of the custom Animated Property.

Value float
New Value.

Use Delay bool
Wait for the Delay time set when registering the Animated Property 
before interpolating the output value toward the Target Value.

Reset Animated Property
Resets the output value and the timer of the Animated Property.

Target UDPWidget
A Definitive Painter Widget. The Widget is responsible for managing 
custom Animated Properties.

Animated Property Index int
The ID of the custom Animated Property.

Use Delay bool
Wait for the Delay time set when registering the Animated Property 
before interpolating the output value toward the Target Value.

46



47



Paint

Paint is an asset defining the appearance of DP Widgets. To create a 
Paint, right click in the Content Browser  → Definitive Painter  → Definitive 
Painter Paint.

Paint has its own editor. The editor window is divided into two panels; 
the preview panel and the detail panel. In the detail panel, you can 
change the properties of the Paint and see it applied onto basic shapes 
drawn in the preview panel.

Parameters

Is Antialiased
This parameter is intended for a future optimization. Right now, every 
piece of geometry is rendered with hardware multisample antialiasing 
enabled (if supported).

Is Dithered
Enable this to reduce visible bands between similar colors. This is 
especially useful for Paints with gradients where blending between 
similar colors over a long distance is performed.

Blend Mode
Defines the blending between the currently rendered Element and the 
Elements that were rendered before the current one.

A. Clear
B. Src
C. Dst
D. Src Over
E. Dst Over
F. Src In

48



G. Dst In
H. Src Out
I. Dst Out
J. Src A Top
K. Dst A Top
L. Xor
M. Plus
N. Modulate
O. Screen
P. Overlay
Q. Darken
R. Lighten
S. Color Dodge
T. Color Burn
U. Hard Light
V. Soft Light
W. Difference,
X. Exclusion
Y. Multiply
Z. Hue
AA.Saturation
AB.Color
AC.Luminosity

Default is Src Over. You can learn more about the available blend modes 
here.

Style
Defines whether the Element is filled, stroked or both.

A. Fill
Fill the area of the Element with the Paint.

B. Stroke
Draw only the outline of the Element.

C. Fill and Stroke
The previous two combined.

Color
Color used to draw the Element.

Stroke Width
The width of the outline. Has effect only with the Fill and Fill and Stroke 
Style.

49

https://skia.org/docs/user/api/skblendmode_overview/


Stroke Miter
Defines the limit at which sharp corners are drawn beveled. Has effect 
only with the Fill and Fill and Stroke Style.

Cap Type
Defines the cap type of strokes. Has effect only with the Fill and Fill and 
Stroke Style.

A. Butt
Default. Strokes have no extension.

B. Round
Adds a circle at each and of strokes.

C. Square
Adds a square at each end of strokes.

Join Type
Defines the corner type of strokes. Has effect only with the Fill and Fill 
and Stroke Style.

A. Miter
B. Round
C. Bevel

Enable Shadows
Enable shadows for the Element.

Shadows
An array of Shadows. Each Paint can hold an unlimited number of 
Shadows the Element can cast shadows with different colors in many 
directions.

Enable
Enable the shadow.

Color
Shadow color.

Blur
Shadow blur or softness.

Offset
Shadow offset (or shadow length) from the position of the Element.

50



Style
Shadow style.

A. Outset
The Element casts shadow as if it was above the background.

B. Inset
The background casts shadow on the Element as if the Element 
formed a hole in the background.

A single outset Shadow with offset (20, 20), blur (10), and black color.

A single inset Shadow with offset (20, 20), blur (10), and black color.
Note that the circle is drawn with a filled&stroked Paint, while the

rectangle is drawn only with a filled Paint.

51



Two outset Shadows; one with offset (30, 30), blur (30) and darker
color (#B3B3B3FF), and one with offset (-30, -30), blur (30) and lighter

color (white).

Shader
An image shader defining the texture of the Element.

Path Effect
An effects altering the geometry of the Element.

Image Filter
A filter altering the appearance of the whole Element.

Mask Filter
A filter altering the appearance of the Element’s border.

52



Shaders

All positions, centers, radii and stop positions are expressed as fractions 
of the Element’s geometrical size. For an Element of size 400, 400, a 
Center (0.5, 0.75) is transformed to the position (200, 300) relative to 
the top left corner of the Element. For the same Element, Radius (0.25) 
is transformed to (100).

DP Conical Gradient Shader
Creates a conical gradient which is basically a radial gradient with two 
focal points. Each point has its own position and radius.

Start Point
Start point position (0...1, 0...1).

Start Radius
Radius around the Start Point (0...1).

End Point
End point position (0...1, 0...1).

End Radius
Radius around the End Point (0...1).

A Conical Gradient with Start Point (0.5, 0.5), Start Radius 0.5, End
Point (0.5, 0.1), End Radius (0.1), and two Stops.

53



DP Linear Gradient Shader
Creates a linear gradient from the Start Point to the End Point.

Start Point
Start point position.

End Point
End point position. A Linear Gradient with Start Point (0.0, 0.0), End Point (0.0, 1.0), and

three Stops.

54



DP Radial Gradient Shader
Creates a radial gradient from at the Center with the radius Radius.

Center
Center position.

Radius
Gradient radius. A Linear Gradient with Center (0.5, 0.5), Radius (0.5), and three Stops.

55



DP Sweep Gradient Shader
Creates a Sweep (umbrella-like) gradient at the Center, starting at the 
Start Angle, ending at the End Angle and with optional Rotation.

Center
Center position.

Start Angle
Start angle of the gradient in degrees. Starts at 3 o’clock and goes 
clockwise when increased.

End Angle
End angle of the gradient in degrees. Starts at 3 o’clock and goes 
clockwise when increased.

Rotation
Optional rotation of the gradient.

A Sweep Gradient with Center (0.5, 0.5), Start Angle (0.0), End Angle
(360.0), Rotation(0.0) and three Stops.

56



Gradient Common parameters

Automatic Stops Distribution
Center position.

Stops
An array of Stops. Each Stop defines a color at a certain point along the 
direction of the gradient.

Color
Stop color.

Position
Stop position (0...1) along the direction of the Gradient.

Tile Mode
Controls drawing outside of the Gradient range.

A. Clamp
Repeat the edge color.

B. Repeat
Repeats the texture generated by the shader.

C. Mirror
Repeatedly mirrors the texture generated by the shader.

D. Decal
Fills the area outside of the Gradient range with transparent 
black.

57



DP Turbulent Noise Shader
Creates a turbulent noise texture useful for simulating organic images 
like water, lava, clouds, etc.

Base Frequency X
Frequency X.

Base Frequency Y
Frequency Y.

Num Octaves
Number of octaves.

Seed
Noise randomization parameter.

Turbulent noise with Base Frequency X (0.05), Base Frequency Y (0.05),
Num Octaves (5), and Seed (123).

58



DP Fractal Noise Shader
Creates a fractal noise texture useful for simulating landscapes, force 
fields, etc.

Base Frequency X
Frequency X.

Base Frequency Y
Frequency Y.

Num Octaves
Number of octaves.

Seed
Noise randomization parameter.

Fractal noise with Base Frequency X (0.05), Base Frequency Y (0.05),
Num Octaves (5), and Seed (123).

59



Path Effects

DP Corner Path Effect
Rounds corners of the shape to the specified radius.

Radius
Corner radius.

A path without (left) and with rounded corners (right) with radius (100).

DP Dash Path Effect
Turns a stroked path into a dashed path. This works only with a stroked 
Paint.

Intervals
An array of floats defining interval at which path is either visible or 
invisible. Intervals with odd indices define the length of visible parts and 
intervals with even indices define the length of invisible parts.

Phase
The offset of Intervals along the path.

60



A dashed path with 4 intervals (20, 10, 50, and 10). The effect starts at
the top left corner and goes clockwise.

DP Discrete Path Effect
Randomly deforms the shape of the Element.

Segment Length
Length of segments the path is broken into.

Deviation
Maximum amount of random offset applied to the forementioned path 
segments.

A deformed path with segment length (20) and deviation (10).

61



DP Trim Path Effect
Trims the path.

Start
Start of the visible part of the path (0...1).

End
End of the visible part of the path (0….1).

Invert
Invert the visible and invisible parts of the path.

A path without (left) and with the trim effect (right) with Start (0), End
(0.6) end Inverse (disabled).

62



DP Compose Path Effect
Composes two Path Effects. It applies the Inner Effect to the path and 
the applies the Outer Effect to the result of that operation.

Outer Effect
This effect is applied to the result of applying the Inner Effect to the 
path.

Inner Effect
This effect is the first to be applied to the path.

DP Sum Path Effect
Sums two Path Effects. It applies the First Effect and the Second Effect 
to the path and sums the results of these operations.

First Effect
The first effect,

Second Effect
The second effect.

63



Image Filters

DP Blur Image Filter
Applies a Gaussian blur filter to the whole Element.

Blur Amount X
Blur amount in the X direction.

Blur Amount Y
Blur amount in the Y direction.

Tile Mode
Controls drawing outside of the Element area.

A. Clamp
Repeat the edge color.

B. Repeat
Repeats the blurred Element.

C. Mirror
Repeatedly mirrors the blurred Element.

D. Decal
Fills the area outside of the Element with transparent black.

A circle without (left) and with the Blur Image Filter (right) with Blur
Amount X (10), Blur Amount Y (10), and Tile Mode (Decal).

64



Mask Filters

DP Blur Mask Filter
Applies a Gaussian blur filter to the Element’s borders.

Blur Amount
Blur amount.

Style
Controls the blur style.

A. Normal
Blurs the border to both inside and outside of the Element.

B. Solid
Blurs the border only to the outside of the Element.

C. Outer
Blurs the border only to the outside of the Element. The inside of 
the Element is filled with transparent black.

D. Inner
Blurs the border only to the inside of the Element. The outside of 
the Element is filled with transparent black.

A circle without (left) and with the Blur Mask Filter (right) with Blur
Amount (10) and Style (Normal).

65



66



Quick Elements

Quick Elements are basic shapes like rectangles, circles, and even paths, 
etc. drawn within the bounds of the Widget in the On Draw Quick 
Elements event. These Elements are not managed by the Widget Tree 
and ignore user input so they render much faster.

Context UDPContext
A Context that must be passed as an argument to every Quick Element 
draw call.

Delta Time float
The time elapsed since the last frame in seconds.

Parent Size FVector2D
The size of the Widget.

Parent Widget UDPWidget
The size of the Widget.

Draw Rect

Context UDPContext
A Context that came with the On Draw Quick Elements event.

Paint UDPPaint
The Paint asset used to draw the Element.

Pos FVector2D
Rectangle position.

67



Size FVector2D
Rectangle size.

Paint in Element Space bool
When enabled, the Canvas Size will be used as the reference size for 
generating Paint effects. Otherwise the Element’s size will be used for 
that purpose.

Canvas Size FVector2D
The reference size for generating Paint Effects. Has effect only with 
enabled Paint in Element Space.

In Transform FDPQuickTransform
Element transformation relative to the Widget. Learn more here.

Draw Circle

Context UDPContext
A Context that came with the On Draw Quick Elements event.

Paint UDPPaint
The Paint asset used to draw the Element.

Pos FVector2D
Circle center.

68



Radius float
Circle radius.

Paint in Element Space bool
When enabled, the Canvas Size will be used as the reference size for 
generating Paint effects. Otherwise the Element’s size will be used for 
that purpose.

Canvas Size FVector2D
The reference size for generating Paint Effects. Has effect only with 
enabled Paint in Element Space.

In Transform FDPQuickTransform
Element transformation relative to the Widget. Learn more here.

Draw Oval
Learn more about ovals here.

Context UDPContext
A Context that came with the On Draw Quick Elements event.

Paint UDPPaint
The Paint asset used to draw the Element.

Pos FVector2D
Bounding rectangle position.

69



Size FVector2D
Bounding rectangle size.

Paint in Element Space bool
When enabled, the Canvas Size will be used as the reference size for 
generating Paint effects. Otherwise the Element’s size will be used for 
that purpose.

Canvas Size FVector2D
The reference size for generating Paint Effects. Has effect only with 
enabled Paint in Element Space.

In Transform FDPQuickTransform
Element transformation relative to the Widget. Learn more here.

Draw Arc
Learn more about arcs here.

Context UDPContext
A Context that came with the On Draw Quick Elements event.

70



Paint UDPPaint
The Paint asset used to draw the Element.

Pos FVector2D
Bounding rectangle position.

Size FVector2D
Bounding rectangle size.

Start Angle float
Start angle of the arc in degrees. Starts at 3 o’clock and goes 
counterclockwise when increased.

Sweep Angle float
Defines the angle span of the arc in degrees. Starts at the Start Angle 
and goes counterclockwise.

Use Center bool
Connect both ends of the arc with its center. Has no effect when used 
with a filled Paint.

Paint in Element Space bool
When enabled, the Canvas Size will be used as the reference size for 
generating Paint effects. Otherwise the Element’s size will be used for 
that purpose.

Canvas Size FVector2D
The reference size for generating Paint Effects. Has effect only with 
enabled Paint in Element Space.

In Transform FDPQuickTransform
Element transformation relative to the Widget. Learn more here.

71



Draw Line
Draws a straight line from the Start Point to the End Point.

Context UDPContext
A Context that came with the On Draw Quick Elements event.

Paint UDPPaint
The Paint asset used to draw the Element.

Start Point FVector2D
Line start point.

End Point FVector2D
Line end point.

Paint in Element Space bool
When enabled, the Canvas Size will be used as the reference size for 
generating Paint effects. Otherwise the Element’s size will be used for 
that purpose.

Canvas Size FVector2D
The reference size for generating Paint Effects. Has effect only with 
enabled Paint in Element Space.

72



Draw Mesh
Learn more about meshes here.

Context UDPContext
A Context that came with the On Draw Quick Elements event.

Paint UDPPaint
The Paint asset used to draw the Element.

Vertices FDPVertex (array)
An array of vertices defining the mesh. Learn more here.

Indices int (array)
An array of integer indices defining the order in which the vertices are 
used to construct the mesh. Learn more here.

Mode EDPVertexMode
Defines the method of constructing the mesh. Learn more here.

Use Indices bool
Use indices when constructing the mesh.

Blend Mode EDPBlendMode
Defines the blending mode of vertex colors and the Widget’s Paint.

Paint in Element Space bool
When enabled, the Canvas Size will be used as the reference size for 
generating Paint effects. Otherwise the Element’s size will be used for 
that purpose.

Canvas Size FVector2D
The reference size for generating Paint Effects. Has effect only with 
enabled Paint in Element Space.

73



In Transform FDPQuickTransform
Element transformation relative to the Widget. Learn more here.

Make Path
Makes a Quick Path object that can be filled with commands and used to
draw a path.

Path FDPQuickPath
A Quick Path object.

Path Move To
Adds beginning of a new contour at the specified coordinates. Learn 
more about this command here.

Path FDPQuickPath
A Quick Path object.

Coords FVector2D
Coordinates at which the new contour should begin.

Relative Coordinates bool
If enabled, all coordinated specified in this command are relative to the 
last point of the path.

74



Path Line To
Adds a line from the last point of the path ending at the specified 
coordinates. Learn more about this command here.

Path FDPQuickPath
A Quick Path object.

Coords FVector2D
Coordinates at which the line ends.

Relative Coordinates bool
If enabled, all coordinated specified in this command are relative to the 
last point of the path.

Path Conic To
Adds a conic curve going from the last point of the path toward the 
Control Point and ending at the End Point. The curve is weighted by the 
parameter Weight. Learn more about this command here.

Path FDPQuickPath
A Quick Path object.

Control Point FVector2D
Defines the control point toward which the curve heads.

End Point FVector2D
Defines the end point of the curve.

Weight float
Defines the weight of the curvature of the curve.

75



Relative Coordinates bool
If enabled, all coordinated specified in this command are relative to the 
last point of the path.

Path Cubic To
Adds a cubic curve going from the last point of the path toward the 1st 
Control Point, then toward the 2nd Control Point and ending at the End 
Point. Learn more about this command here.

Path FDPQuickPath
A Quick Path object.

Control Point 1 FVector2D
Defines the 1st control point toward which the curve heads.

Control Point 2 FVector2D
Defines the 2nd control point toward which the curve heads.

76



End Point FVector2D
Defines the end point of the curve.

Relative Coordinates bool
If enabled, all coordinated specified in this command are relative to the 
last point of the path.

Path Quad To
Adds a quad curve going from the last point of the path toward the 
Control Point and ending at the End Point. Learn more about this 
command here.

Path FDPQuickPath
A Quick Path object.

Control Point FVector2D
Defines the control point toward which the curve heads.

End Point FVector2D
Defines the end point of the curve.

Relative Coordinates bool
If enabled, all coordinated specified in this command are relative to the 
last point of the path.

77



Path Add Circle
Adds a circle with the center at the Center and radius Radius. Learn 
more about this command here.

Path FDPQuickPath
A Quick Path object.

Center FVector2D
Center of the circle.

Radius float
Radius of the circle.

Path Add Oval
Adds an oval drawn within the bounds of a rectangle defined by Position
and Size. Learn more about this command here.

Path FDPQuickPath
A Quick Path object.

Pos FVector2D
Position of the top left corner of the bounding rectangle.

Size FVector2D
Size of the bounding rectangle.

78



Path Add Rect
Adds a rectangle with position at Position and size Size. Learn more 
about this command here.

Path FDPQuickPath
A Quick Path object.

Pos FVector2D
Position of the top left corner of the rectangle.

Size FVector2D
Size of the rectangle.

Path Add Round Rect
Adds a rectangle with position at Position and size Size and optionally 
rounded corners. Each corner can have different radius. Learn more 
about this command here.

Path FDPQuickPath
A Quick Path object.

Pos FVector2D
Position of the top left corner of the rectangle.

Size FVector2D
Size of the rectangle.

79



Top Left Radius float
Radius of the top left corner.

Top Right Radius float
Radius of the top right corner.

Bottom Right Radius float
Radius of the bottom right corner.

Bottom Left Radius float
Radius of the bottom left corner.

Path Add Poly
Adds a polyline defined by a set of points. Learn more about this 
command here.

Path FDPQuickPath
A Quick Path object.

Points FVector2D (array)
Points defining the polyline.

Close bool
Close the polyline. If enabled, the polyline is closed by adding a line 
between the last and the first point.

80



Path Close
Closes the path by connecting the last point with the first point with a 
line. Learn more about this command here.

Path FDPQuickPath
A Quick Path object.

Set Path Fill Type
Defines the method of filling the path. Learn more about this command 
here.

Path FDPQuickPath
A Quick Path object.

Fill Type EDPPathFillType
Fill type.

81



Draw Path
Learn more about paths here.

Context UDPContext
A Context that came with the On Draw Quick Elements event.

Paint UDPPaint
The Paint asset used to draw the Element.

Path FDPQuickPath
A Quick Path to draw.

X Axis Fit EDPFitType
Scales the path to fit the Container Width parameter with the following 
options:

A. Never
Disables fitting.

B. If Smaller
Stretches the path if the path is narrower than the Container 
Width.

C. If Bigger
Shrinks the path if the path is wider than the Container Width.

D. Always
Combines the last two options.

Y Axis Fit EDPFitType
Does the same as the previous parameter but for the Y axis and the 
Container Height parameter.

Container Width float
Width of the container to fit the path into.

82



Container Height float
Height of the container to fit the path into.

Paint in Element Space bool
When enabled, the Canvas Size will be used as the reference size for 
generating Paint effects. Otherwise the Element’s size will be used for 
that purpose.

Canvas Size FVector2D
The reference size for generating Paint Effects. Has effect only with 
enabled Paint in Element Space.

In Transform FDPQuickTransform
Element transformation relative to the Widget. Learn more here.

Get Path Length
Returns Path length.

Path FDPQuickPath
A Quick Path to measure.

Return Value float
Path length.

83



Get Position on Path
Returns the position on the path at the given distance from the 
beginning.

Path FDPQuickPath
A Quick Path to measure.

Distance float
Distance from the beginning.

Return Value FVector2D
Position on the path.

Get Path Tangent
Returns the tangent vector at the given distance from the beginning.

Path FDPQuickPath
A Quick Path to measure.

Distance float
Distance from the beginning.

Return Value FVector2D
Tangent vector.

84



Draw Text
Draws a block of text.

Context UDPContext
A Context that came with the On Draw Quick Elements event.

Paint UDPPaint
The Paint asset used to draw the Element.

Text FText
Text to be drawn.

Font FDPFont
Structure of parameters defining font properties. Learn more here.

Pos FVector2D
Text block position.

Size FVector2D
Text block size.

Justification ETextJustify
Text justification.

A. Left
B. Center
C. Right

Wrap Text bool
Wrap the text to prevent overflowing of the block.

In Transform FDPQuickTransform
Element transformation relative to the Widget. Learn more here.

85



Draw Text on Path
Draw a line of text following a Path.

Context UDPContext
A Context that came with the On Draw Quick Elements event.

Paint UDPPaint
The Paint asset used to draw the Element.

Text FText
Text to be drawn.

Font FDPFont
Structure of parameters defining font properties. Learn more here.

Path FDPQuickPath
A Quick Path to follow.

Justification ETextJustify
Text justification along the path.

D. Left
A. Center
B. Right

Warp Text bool
Warp individual characters to make them perfectly fit the followed path. 
Note that this feature is slow and might not work properly on paths with 
sharp edges.

Vertical Position Offset float
Move the text above or below the path.

Horizontal Position Offset float
Text offset along the path.

86



Measure Text
Returns the size of a line of text.

Font Info FDPFontInfo
Structure of parameters defining font properties. Learn more here.

Text FText
Text to measure.

Return Value FVector2D
Size of the text line.

FDPQuickTransform
DP Quick Transform is a structure holding attributes controlling the 
transformation of Quick Elements.

Translate FVector2D
Element position.

Scale FVector2D
Element scale.

Shear FVector2D
Element shear (skew).

Rotation float
Element rotation in degrees.

87



Pivot FVector2D
Transformation pivot or center. Default is (0.5, 0.5) at the center of the 
Element. (0.0, 0.0) would be at the top left corner and (1.0, 1.0) at the 
bottom right corner. The transformation is performed around this point.

DP Quick Transform FDPQuickTransform
Created transformation.

88



Performance considerations

The same rule applies here as anywhere else; use only what you really 
need when you need it. Every Element drawn has its cost. So has every 
effect applied to a Paint.

Geometry

1. Complexity
The more complex the geometry, the more expensive it is to 
draw. Avoid paths whenever possible and try to substitute them 
with basic shapes like rectangles, circles, arcs, etc.

2. Dynamic
While generating basic shapes at runtime is fast, generating paths
at runtime is quite expensive. Whenever possible, construct paths
at startup and reuse them.

3. Size
The bigger the geometry, the more expensive it is to draw. 
Always try to keep the screen area occupied by the Element as 
small as possible.

Paint

1. Opacity
Set the opacity to anything lower than 1, i.e. make the Element 
transparent, only when necessary. The same applies to setting 
the Blend Mode to anything other than Src Over.

2. Shadows
Shadows bring significant performance cost. If you really need to 
use them (they look cool so I believe you do!), avoid using very 
high Blur amount (>10) and keep them from overlapping each 
other.

3. Shaders
Shaders in general are relatively cheap but avoid using a large 
number (>20) of Stops for Gradients.

4. Path Effects
The performance cost of Path Effects is heavily dependent on the
complexity of the geometry. The more complex the geometry, the
more expensive Path Effects are.

5. Filters
The performance cost of Filters is determined by the blur amount
and by the screen area covered by the geometry affected by the 
Filter.

Animations

Animations themselves are very cheap but frequent changes to the 
transformation of Elements and/or shape of Elements and/or Paint 
properties might result in a significant impact on performance.

89



Known limitations and issues

1. Drawing lots of slant path segments may result in a significant 
performance degradation in the Editor. This issue isn’t present in 
projects packaged for shipping.

2. Mouse hit test and text path follow ignore shape alterations made
using Path Effects.

3. Some changes to DP Widgets made in the Widget Blueprint 
Editor might not take effect until the Widget Blueprint is 
recompiled.

4. The Editor might occasionally freeze when more than one Widget
Blueprint Editors containing at least one DP Canvas Widget 
and/or DP Paint Editors and/or DP SVG Editors are opened at the
same time. This issue isn’t present in the PIE mode or in packaged
projects.

90



Changelogs

Changelog 1.2.2

New

• Added support for named colors in imported SVG files

Fixed

• DP Text text shadow has wrong offset with enabled wrapping

Removed
• Dropped support for Unreal Engine 4.25

Changelog 1.2.1

Fixed

• DP Canvas doesn’t render anything with ray tracing enabled

Changelog 1.2.0

New

• Added support for Linux

Fixed

• Red and blue channels of DP Canvas are swapped on Linux

Changed

• Upgraded Skia to M101

• Switched from bare OpenGL backend to SDL

Changelog 1.1.4

Fixed

• Yet another attempt to fix wrong mouse hit test position in some 
cases

• Gradients not working on Text On Path Widgets.

• Mouse hit test not working properly on Pie Chart Prefab

• Crash when a DP Canvas has negative size

Changelog 1.1.3

Changed

• FDPFontInfo struct has been replaced by FDPFont struct

• EDPFontSlant, EDPFontWeight, and EDPFontWidth enums have 
been removed

91



New

• Added Scale X, Skew X, Edging, and Hinting Font parameters

Fixed

• Wrapped text has wrong line height

• Mouse hit test not working when playing in a separated PIE 
window

Changelog 1.1.2

Changed

• Font for DP Text Widget, DP Text On Path Widget and for 
DrawText and DrawTextOnPath Quick Draw nodes is no longer 
defined by the Font Family, Font Size, Color, Font Weight, Font 
Width, and Font Slant parameters (encapsulated within 
FDPFontInfo structure in the Quick Draw mode). Instead, it now 
uses a Font imported into the Unreal Editor just like the UMG Text
Block Widget does.

• The forementioned change has been projected into the Pie Chart 
Prefab.

Changelog 1.1.1

Fixed

• Mouse hit test not working for children of DP Canvases positioned
anywhere else then at the 0; 0 coordinates

• Widgets using Paths cause random crashes

• Pie Chart Prefab crashes when all data points have 0 value

Changelog 1.1.0

New

• All Widget mouse related events provides a reference to the 
Widget that fired the event

• Mouse hit test precision can be set to two precision levels

• In the Widget Blueprint Editor, DP Widgets draw guides showing 
the user the real geometric shape of Elements

• Widget Animation settings can be copy&pasted.

• Added DP Path Composer Widget

• Each Path Command in DP Path and in DP Text on Path Widgets 
can be optionally skipped.

92



Changed

• DP Prefabs plugin has been merged into Definitive Painter plugin 
and is no longed separated.

• Removed redundant module dependencies from the source code.

• The default color for Paint and Gradient Stop was set to white.

Fixed

• Clipping not working for DP Paths fitted into the parent Widget’s 
bounds.

Changelog 1.0.3

Fixed

• Some classes aren’t exposed through the API

Changelog 1.0.2

Fixed

• Animations aren’t updating in the Editor

• DP Widgets overflow their Scroll Box parent

• Path X&Y fit options are missing from the Quick Draw mode

Changelog 1.0.1

Fixed

• DP Widgets in the Editor don’t redraw when zooming and/or 
panning the Editor viewport

• DP Path not properly fitting into its Widget bounds

• DP Arc mouse hit test not working for Arcs with enabled center

93


	Definitive Painter User Manual
	Introduction
	Why?
	How?

	Installation
	Windows
	Linux

	Architecture
	Terminology
	Widgets
	Widget Guides
	DP Canvas
	Parameters

	DP Arc
	Parameters

	DP Circle
	Parameters

	DP Mesh
	Parameters

	DP Oval
	Parameters

	DP Path
	Parameters
	Commands

	DP Path Composer
	Parameters

	DP Point Cloud
	Parameters

	DP Rectangle
	Parameters

	DP SVG
	Parameters

	DP Text
	Parameters

	DP Text On Path
	Parameters


	Widget Animation
	Register Animated Property
	Get Animated Property Value
	Get Animated Property Value
	Set Animated Property Start Value
	Set Animated Property Target Value
	Set Animated Property Value
	Reset Animated Property

	Paint
	Parameters
	Shaders
	Path Effects
	Image Filters
	Mask Filters


	Quick Elements
	Draw Rect
	Draw Circle
	Draw Oval
	Draw Arc
	Draw Line
	Draw Mesh
	

	Make Path
	Path Move To
	Path Line To
	Path Conic To
	
	Path Cubic To
	
	Path Quad To
	
	Path Add Circle
	
	Path Add Oval
	
	Path Add Rect
	
	Path Add Round Rect
	
	Path Add Poly
	
	Path Close
	
	Set Path Fill Type
	
	Draw Path
	Get Path Length
	Get Position on Path
	Get Path Tangent

	Draw Text
	Draw Text on Path
	Measure Text
	FDPQuickTransform

	Performance considerations
	Geometry
	Paint
	Animations

	Known limitations and issues
	Changelogs
	Changelog 1.2.2
	New
	Fixed
	Removed

	Changelog 1.2.1
	Fixed

	Changelog 1.2.0
	New
	Fixed
	Changed

	Changelog 1.1.4
	Fixed

	Changelog 1.1.3
	Changed
	New
	Fixed

	Changelog 1.1.2
	Changed

	Changelog 1.1.1
	Fixed

	Changelog 1.1.0
	New
	Changed
	Fixed

	Changelog 1.0.3
	Fixed

	Changelog 1.0.2
	Fixed

	Changelog 1.0.1
	Fixed



